
Message Logging in Mobile Computing

Bin Yao\ Kuo-Feng Ssu*, and W. Kent Fuchs1

1 School of Electrical and Computer Engineering, Purdue University
* Coordinated Science Laboratory, University of Illinois

p

Abstract
Dependable mobile computing is enhanced by indepen-

dent recovery, low power consumption and no dependence
on stable storage at the mobile host. Existing recovery pro-
tocols proposed for mobile environments typically create
consistent global checkpoints that do not guarantee inde-
pendent recovery- and low power consumption. This paper
demonstrates the advantages of message logging by de-
scribing a receiver based logging protocol. Checkpointing
is utilized to limit log size and recovery latency. We com-
pare the performance of our approach with that of existing
mobile checkpointing and recovery algorithms in terms of
failure free overhead and recovery time. We also describe a
stable storage management scheme for mobile support sta-
tions. Garbage collection is achieved without direct par-
ticipation of mobile hosts.

1 Introduction
Mobile computing [1,2] presents new challenges and

requirements for checkpointing and recovery protocols [3].
Failures such as loss of connection or power outages that
are rare in fixed networks can be common in mobile en-
vironments. Recovery algorithms are required to tolerate
multiple simultaneous failures and failure during recovery,
and it is desirable that processes be able to recover inde-
pendently. Coordinated recovery among processes running
on Mobile Hosts (MH) may slow down recovery [4] and
increase the chance of having multiple rollbacks of the en-
tire system in order to handle errors during recovery. Con-
serving battery power by means of limiting the number of
extra messages during checkpointing and recovery is also
important. Limiting additional transmitted messages has
the added benefit of reducing contention on the wireless
network.

As an MH may be lost or permanently damaged, hard
drives on mobile hosts are not generally considered stable
storage. Therefore they are not suitable as the only loca-
tion for storing checkpoints or message logs. Traditional

This research was supported in part by the Defense Advanced Re-
search Projects Agency (DARPA) under contract DABT 63-96-C-0069,
and in part by the Office of Naval Research under contract N00014-97-1-
1013.

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

checkpointing and message logging algorithms [5-12] are
not directly applicable under such conditions. Previous
proposals have suggested that checkpoints be sent back to
Home Agents (HA) [13]. Others have proposed that sta-
ble storage on Mobile Support Stations (MSS) be used for
checkpoints and message logs [14-16]. Because check-
points and/or message logs are stored on different MSSs
as an MH moves from cell to cell, the organization of the
distributed process state information is important for suc-
cessful recovery. Several algorithms have been proposed to
solve these problems [14,17]. Garbage collection of stable
storage on MSS is also of importance. When state infor-
mation on MSS is no longer needed for recovery, it should
be discarded to make room for new checkpoints and mes-
sage logs. Most present schemes require cooperation from
mobile hosts. If one participating MH fails, some stable
storage may never be collected for reuse.

Checkpointing and recovery protocols previously pro-
posed for mobile environments have typically saved con-
sistent global checkpoints [13,15,18,19]. This requires all
participating mobile hosts to roll back during recovery, but
some mobile hosts may net be able to rollback due to tran-
sient or permanent failures. This approach forces applica-
tion messages to be resent over the slow wireless network
during recovery, resulting in slow recovery and additional
power usage at the MH. Recent work has shown through
analytic modeling that message logging can be an attractive
approach to recovery in mobile environments [14]. An-
other recent research project has derived mechanisms for
managing stable storage on the MSS [20].

This paper describes a receiver-based pessimistic mes-
sage logging protocol for MH, MSS and HA, and a dis-
tributed state organization scheme for mobile computing
environments. Using our approach, processes running on
mobile hosts are able to recover quickly and indepen-
dently of other processes. The protocol is experimentally
compared with an ideal consistent checkpoint protocol to
demonstrate that message logging incurs similar failure
free overhead and achieves much faster recovery in a wire-
less network implementation. This approach requires no
extra control messages sent by the MH. Garbage collection

0-7695-0213-X/99 $10.00 © 1999 IEEE
294 19990719 196

is achieved without direct participation of the MH. Even if
the MH permanently fails, state information left on MSSs
can be identified and discarded.

2 The Mobile IP Environment
The mobile computing environment used in this paper is

based on the Mobile IP architecture [2]. This environment,
as illustrated in Figure 1, contains fixed hosts connected
by a backbone network and mobile hosts that use a wire-
less interface to communicate with fixed hosts and other
mobile hosts. Each MH is associated with a home net-
work on which the MH receives packets like a normal fixed
host. Each MH is also assigned a home address that has
the subnet prefix of its home network. The home address
never changes, regardless of the MH's movement. Mobile
support stations (foreign agents) are those fixed hosts that
have both a wireless interface and a fixed network (Eth-
ernet, ATM, etc.) interface. They function as routers and
provide connections for mobile hosts to the entire network.
The area that a mobile support station's wireless interface
serves is called a cell. As mobile hosts move from cell to
cell, their IP addresses have to be changed to reflect the
subnet mask of their new mobile support stations. This can
cause difficulty in maintaining a connection as the MH tra-
verses cells. Mobile IP solves this problem by providing
both home agents and foreign agents.

When communicating with a mobile host, other hosts
always send packets to the mobile host's home address. A
home agent executes on the mobile host's home network. It
maintains current location information of the mobile hosts.
Packets destined for mobile hosts are intercepted by the
home agent and then tunneled to the current foreign agent
that is serving the mobile host. Packets are then deliv-
ered to the mobile host by the foreign agent. Packets sent
by mobile hosts are generally delivered to their destina-
tion using standard IP routing mechanisms, not necessarily
through the home agent. An example is illustrated in Fig-
ure 1. Packets from mobile host A follow the dotted line
and pass an FA, a HA, and an FA, before reaching mobile
host B.

One of the distinctive features of this architecture is the
existence of home agents. When an MH switches cells, the
home agent must know where the mobile host is located be-
fore any future packets can be delivered to the mobile host.
This suggests that the home agent might be an attractive
place to log messages for mobile hosts. However there are
routing optimizations proposed in the literature [21] that
route some packets directly to the foreign agent of the mo-
bile host instead of through its home agent. On the other
hand, we observe that all packets sent to mobile hosts must
reach the mobile support station first before transmission
through the wireless interface. In our approach stable stor-
age at the MSS is used to store checkpoints and message

Home Agent
Foreign Agent Mobile Host B

Figure 1: The mobile IP environment.

logs for mobile hosts.
We assume that the foreign agents and home agents do

not fail when serving mobile hosts that are executing the
checkpoint and roll-back recovery protocol. MSS and HA
typically have a much smaller failure rate than that of MHs
as they run on fixed networks. Even if they do fail, since
HA and FA are processes that implement carefully defined
state machines, checkpointing and message logging pro-
tocols can be designed relatively easily to tolerate those
failures [22].

There can be multiple processes running on a single mo-
bile host. They can have fail-stop failures independent of
each other, or fail at the same time as the mobile host. Fi-
nally, we assume that MHs communicate with MSSs using
a FIFO link level protocol, processes communicate with
each other using TCP (or other reliable transport proto-
col) over Mobile IP, and processes execute according to
the piece wise deterministic model.

3 Related Work
Elnozahy, Johnson, and Wang developed a general sur-

vey for checkpointing and message logging protocols in
distributed systems [23]. Alvisi and Marzullo have pro-
vided an in-depth treatment of message logging [24]. Rao
and Alvisi compared the cost of recovery for different mes-
sage logging approaches [4], and Neves and Fuchs [25]
compared recovery speed for a coordinated checkpoint
protocol [13] and a sender based message logging proto-
col [8].

Acharya and Badrinath [15] introduced a two-phase
method for taking global consistent checkpoints. They pro-
posed that checkpoints be stored on the stable storage of
mobile support stations instead of on mobile hosts. In their
protocol, processes alternate between two states, SEND
and RECV. If a process is in the SEND mode and receives a

295

MSS1-MSS2-MSS3
Checkpoint MSS2

MSS1

Figure 2: Message logging algorithm.

message, it is forced to take a checkpoint. During recovery,
the global state is reconstructed from a set of checkpoints
for each process.

Pradhan, et al. analytically evaluated the performance
of different state saving protocols and hand off strate-
gies [14]. They also suggested storing checkpoints and
message logs at mobile support stations. Their result indi-
cates that message logging is suitable for mobile environ-
ments except in cases where the mobile host has high mo-
bility, wireless bandwidth is low, and failure rate is high.

A hybrid checkpoint-recovery protocol for mobile sys-
tems was proposed by Higake and Takizawa [17]. As a
mobile host moves between cells, it leaves an agent pro-
cess on each mobile support station on its itinerary. Dur-
ing recovery, processes on fixed hosts recover from consis-
tent checkpoints and processes on mobile hosts restart from
their own checkpoints and roll to a state that is consistent
with those on fixed hosts with the help of agent processes.

Cao and Singhal proved that it is not possible for a
checkpoint algorithm to preserve both non blocking and
min process properties at the same time [18]. This work is
based on an earlier work that tried to achieve non blocking
and min processes at the same time [16]. They also pro-
posed a non-blocking mobile checkpointing protocol [19].
Their scheme uses mutable checkpoints to avoid storing
unnecessary checkpoints on mobile support stations.

Neves and Fuchs [13] developed an adaptive check-
pointing scheme for mobile computing. Their protocol
uses time to indirectly coordinate the creation of recover-
able consistent checkpoints. Processes take hard check-
points that are sent to home agents and soft checkpoints
that are stored on the local disk of the mobile host.

4 Algorithm Description
4.1 Message Logging and Checkpointing

The message logging and checkpointing algorithm of
this paper consists of three parts: one that executes on the
MSS, one that executes at the HA, and one implemented
by application processes on the mobile host. The protocol
implemented by application processes on the mobile host
is similar to existing message logging protocols. Processes
tag every sent message and store a copy of the tag in mem-
ory. Upon receiving a message, a process also stores the
tag of the received message in memory. The tag includes
the message sequence number, a globally unique process
identifier, and the tag of the last message received by the
sending process. The process periodically writes check-
points to the MSS that is currently serving as its foreign
agent. Checkpoints are taken in a non-blocking fashion us-
ing copy on write [26]. The checkpoint includes not only
the process state information necessary to recover the pro-
cess, but also the tags of the last message it sent and re-
ceived before the checkpoint.

Mobile IP maintains the TCP connection as the MH
moves, thus switching cells when writing checkpoints does
not create problems. Packets sent by the MH are routed
as conventional IP, instead of having to go through the
HA, thus not degrading performance on the MSS. When
the MH switches cells, application processes are notified.
Each process sends to the new MSS a Report Message that
contains the tag of the last message it received from the old
MSS. These messages can be piggybacked in the registra-
tion packet specified by the Mobile IP protocol.

Every time an MH enters a MSS's cell, the MSS assigns
a unique id for the message log of each application pro-
cess executing the message logging protocol on the MH. If
the MH has visited this MSS before, the ids assigned are
greater than those previous. Messages destined for mobile
hosts in the MSS's cell are logged on the MSS before being
forwarded. The sequence of messages seen by the mobile
host are the same as seen and logged by the MSS due to
the FIFO link-level wireless protocol. Some messages can
be logged by the MSS and not yet delivered to the MH.
This type of message is an in transit message. The new
MSS forwards report messages sent to it from the MH at
cell switch time to the old MSS of the MH. The old MSS
can then use the last received message tag for each appli-
cation process to detect in transit messages and can purge
them from message logs. After each mobile host leaves a
cell, the MSS that the MH just left sends a message to the
MH's HA reporting the messages log ids for each applica-
tion process on this MH. If an MH writes a checkpoint to
an MSS, the MSS sends a checkpoint message to the MH's
HA indicating that it has finished storing the checkpoint for
the MH. In the event that a process failed on an MH, or the

296

MH failed, the MSS that was serving the MH detects the
error and sends its home agent a Failed Message that con-
tains message tags of the last sent message for each failed
application to the MH's HA.

On the HA, a process keeps track of the location of an
MH using the registration procedure specified by the Mo-
bile IP protocol. It saves the whole itinerary taken by the
mobile host into an array named itinerary array. Each el-
ement of the array is the address of an MSS on the MH's
path. The HA waits for the checkpoint message from the
MSS that contains the location of the last finished check-
point of the mobile host. Upon receiving this message, the
HA may begin the garbage collection procedure to reclaim
stable storage on the MSSs.

The HA also serves as an MSS on the home network.
It executes the protocol for MSSs in addition to HA pro-
tocols. If an MH does not use the wireless interface on its
home network, its HA has to deviate from standard Mobile
IP so that the HA can intercept and log messages destined
for MHs that are "at home".

In our protocol, checkpoints are taken periodically and
stored on MSSs. As one reviewer pointed out, using two
kinds of checkpoints [13], one stored on the MH host's
local disk and one on the MSSs can reduce power con-
sumption of the mobile host even further (as a smaller num-
ber of checkpoints are sent through the wireless interface)
and achieve even faster recovery if the local disk survives
failure. The HA must be aware of these "possibly stable"
checkpoints so that it can know which message logs should
be sent to the MH. The associated cost is that larger mes-
sage logs have to be stored at MSSs and extra processing
performed at HAs. Also, if the local disk on the MH fails,
recovery can take longer. Depending on the application,
network characteristics and type of mobile hosts, this can
serve as a viable alternative to saving all checkpoints on
MSSs.

If processes running on mobile hosts maintain multi-
ple TCP connections with other processes, they can see
a different sequence of messages from those by the for-
eign agents due to scheduling in the thread library. During
recovery they could take an execution path different from
that before the failure. To ensure correctness, we limit ap-
plications running on the mobile hosts to be a single mes-
sage queue shared by multiple processes, or a single pro-
cess with one TCP connection.

Figure 2 illustrates the effects of the logging algorithm.
As a mobile host moves along the dashed line, MSSs on its
itinerary log messages for the mobile host. The mobile host
takes a checkpoint while at MSS2. All this information is
sent to the HA for further processing.

MSS1 discards log
MSS2 trims log before

checkpoint

MSS1

4.2

Figure 3: Garbage collection.

Distributed State Information and Garbage
Collection

As the MH moves from cell to cell, it leaves message
logs and checkpoints on the MSSs that are on its itinerary.
Itinerary information kept at its HA is used to reconstruct
a consistent state for the MH. The HA knows on which
MSS the last checkpoints are stored for each application
process on the MH by examining the checkpoint messages
sent to it by MSSs. Messages logged after the checkpoint
will have to be replayed in order for processes on the MH to
recover. All other logged messages and previously stored
checkpoints are no longer needed for recovery.

An example is sketched in Figure 3. Assume there is
only one application process P executing on the MH. The
MH moves from MSS1 to MSS3 and P takes a checkpoint
on MSS2. HA has the MH's itinerary and the location of
P's checkpoint stored in its memory. Since the HA knows
that a checkpoint for P has been taken at MSS2, the HA can
now ask MSS1 to delete message logs for process P, and
ask MSS2 to delete messages logged prior to the check-
point since they are no longer necessary for recovery.

Garbage collection is straight forward. After receiving
a checkpoint message from an MSS, the HA examines its
itinerary array and determines which message log is useful
and which is rendered obsolete by the checkpoint. The HA
sends out requests to those MSS with stale message logs
and checkpoints so that they can garbage collect the stable
storage. This request includes message log identifiers so
that the MSS can distinguish among multiple logs in case
the MH visits the MSS several times. Upon receiving the
request, the MSS removes obsolete message logs and/or
checkpoints, then sends back an ACK to HA: After receiv-
ing all the ACKs, the HA trims its itinerary array. The HA
can also start the garbage collection either periodically to

MSS1

-V\\ MSS3
MSS2-MSS3 send log

MSS2 sends checkpoint

HA

Figure 4: Recovery algorithm.

limit the length of the itinerary array or if stable storage at
the MSS becomes depleted.

4.3 Recovery Algorithm

A mobile host restarts a failed process by sending to
its HA a message containing the id of the process to be
restarted. The HA responds by sending to the MH the
message tag of the last message sent out by the process.
The HA determines which MSS currently holds the lat-
est checkpoint for this process and asks the MSS to send
the checkpoint to the MH. Then the HA sends requests to
MSSs that hold message logs for the process, which then
in turn replay the log so that the process receives messages
in the same order as before failure. When replaying the
logged messages, Ihe MSSs mark them as "replayed" so
that they are not logged by the receiving MSS. If other pro-
cesses continue to send messages to the recovering process,
these messages will be logged and sent to the MH as nor-
mal messages, but they are not delivered to the application
until after the recovery is complete. Figure 4 illustrates this
procedure.

If an application attempts to send messages during re-
covery, the message tag is compared to the tag of the last
message sent by the process before failure. If the tag in-
dicates that the message has been sent before the failure,
the message is not transmitted by the MH. This prevents
the MH from re-transmitting application messages previ-
ously sent during recovery, thereby saving bandwidth and
battery power. Failures during recovery are handled in the
same way as failures during normal execution, since mes-
sages sent to the MH during recovery are logged on the
MSS as normal messages.

4.4 Limited Stable Storage on Mobile Support
Stations

If a mobile support station depletes its stable storage
while trying to store checkpoints or message logs on behalf
of mobile hosts, it has to either halt and perform garbage
collection or find alternative storage. Halting an MSS ef-
fectively blocks every process on every mobile host in the
MSS's cell. All incoming packets for mobile hosts are lost
and must be resent later. Managing stable storage on the
MSSs to reduce the frequency of blocking is therefore crit-
ical. Stable storage management is the focus of another
recent project [20].

One way to reduce the possibility of halting an MSS is
to use watermarks. When free stable storage on an MSS
reaches a low watermark, that MSS selects a process as the
target of garbage collection, forces it to take a checkpoint
(maybe on another MSS), and discards previous message
logs and checkpoints saved for that process.

Halting an MSS can also be avoided when storage is de-
pleted by forwarding the logs and checkpoints to the mo-
bile host's home agent, if there is enough bandwidth in the
backbone network. The MSS can then execute the garbage
collection algorithm. Another alternative is to have other
MSSs or routers on the route of the packets store message
logs. The MSS on the last hop can simply forward packets
to the MH without logging them. This requires some sig-
naling messages be sent to the HA so that the HA knows
the exact locations of the logs.

5 Experimental Results
We compare the performance of our protocol with an

ideal coordinated checkpoint protocol that takes periodic
checkpoints without exchanging any messages. Failure
free overhead and recovery time are evaluated.

5.1 Experiment

The specific environment used in the experiment is
shown in Figure 5. A Sun Sparc 20 workstation running
Solaris 2.6 with 320M memory and a Lucent Technology
Wavepoint II [27] connected by 10M Ethernet served as
the mobile support station. Checkpoints and message logs
were stored on a dedicated file server that was connected
to the workstation using a high speed ATM network. Two
Pentium II 300MHz PCs equipped with Lucent Technol-
ogy's Wavelan [27] wireless interface cards served as the
mobile hosts. The PCs were running Windows NT 4.0 with
256M memory each. In our implementation, processes ex-
ecuted pre-generated traces that emulated WWW brows-
ing behavior. The processes also functioned as servers and
they read requests and generated replies in both sleep and
request states. There were four client processes running,
two on each PC. Each client was assigned a unique ID.

298

Table 1: Execution Time Overhead Comparison.

Trace unmodified
(seconds)

ckpt
(seconds)

ckpt
Overhead(%)

log with ckpt
(seconds)

log with ckpt
Overhead(%)

Tl 1180.2 1243.6 5.3 1234.5 4.60
T2 869.1 9067.5 4.3 915.5 5.34
T3 1013.4 1060.1 4.6 1066.1 5.20
T4 871.5 898.1 3.0 905.6 3.92
T5 911.3 957.6 5.0 950.6 4.32
T6 866.7 910.0 4.9 913.1 5.35
T7 850.7 891.9 4.8 876.6 3.04

ATM switch Sun Ultra 2
file server

Figure 5: Experiment environment.

For routing and processing, a client attached to each mes-
sage it transmitted a header that contained the destination
ID, the type of message (request or reply), and the ID of
the sender. Clients did not send messages directly to each
other. Instead, they sent messages over the wireless net-
work to a server process running on the Sun workstation.
The server process was responsible for storing checkpoints
and message logs as requested by the client processes. It
also functioned as a router by examining the header field
of each message and forwarding messages to their destina-
tion.

Checkpoints were not actual restartable process states,
but were large messages intended to represent a range of
reasonable state sizes for mobile hosts. Client processes
had a separate thread that periodically sent checkpoints to
a server. The server process also had separate threads that
listened for checkpoints and wrote them to disk. Check-
pointing was asynchronous.

5.2 Trace Generation
Request traces were generated from four individual

traces to represent a variety of network load. These four
individual traces represented the process sleep interval
(SLEEP), number of requests sent during each active in-
terval (NUMBER), the request packet distribution (RQ),
and the reply packet distribution (RY). The request packet
distribution was small as HTTP requests are typically less
than several hundred bytes. Reply packets were large with
a large variance to reflect the nature of a typical web-
servers' output. When accessing a web page, several re-
quests are typically sent to the web server. We captured
this behavior with the NUMBER trace.

A utility program read the first three traces and gener-
ated request traces used by each client. This program first
read a value from the SLEEP trace and multiplied it by
1000 and a predefined coefficient to obtain the sleep time in
milliseconds. The time value was written into the request
trace file. The NUMBER trace was then read to determine
how many request events were to be written out and the
destination for these requests was randomly chosen. For
every request event, the request length was read from the
RQ trace. Seven traces (Tl... T7) were generated, with co-
efficient of 1/2, 1/4,... 1/128. By using several ratios, we
obtained a variety of traces that represent distinct network
loads.

5.3 Failure Free Overhead
The applications were first executed unmodified with-

out message logging and checkpointing. They then ran
with only periodic checkpointing enabled. Finally, the ap-
plication executed with both checkpointing and message
logging enabled. The checkpointing interval was five min-
utes. The execution times shown in the following figures
and tables are the average of three runs. Total execution
time of the three cases for different traces was measured
and is shown in Table 1 and Figure 6. The overheads in-

299

Table 2: Recovery Time Comparison.

Tl T2 T3 T4 T5 T6 T7

Figure 6: Normal execution overhead.

Tl T2 T3 T4 T5 T6 T7

Figure 7: Recovery time.

curred by the coordinated checkpointing protocol and the
message logging protocol are also shown.

5.4 Recovery Time
Recovery time is obtained by measuring the time for a

process to read the checkpoint and proceed to a specific ex-
ecution point. In our experiments, we chose that point to
be after the 500th event in the request trace file. No check-
pointing or message logging takes place during recovery.
Recovery times for the consistent checkpointing protocol
and the message logging protocol are measured and shown
in Table 2 and Figure 7.

5.5 Discussion
From the failure free overhead data we see that for

all of the traces message logging has similar performance
to checkpointing without logging. The largest difference

Trace Using ckpts
(seconds)

Using message logs
(seconds)

Tl 326.5 131.9
T2 200.4 19.82
T3 260.0 70.28
T4 191.00 23.16
T5 220.9 44.14
T6 202.6 27.67
T7 195.5 18.98

is less than 2 percent of the execution time without any
checkpoints. When message logging is performed, the pro-
cesses take checkpoints at the same frequency as the stan-
dard checkpointing protocol. The experiments illustrate
that the overhead due to logging messages at the MSS is
negligible. The reason is that messages are not written to
disk before being forwarded to the MH.

As is known for fixed networks, recovery using message
logging is often faster than that based on standard check-
points. The processes recovered three to ten times faster
using message logs than with checkpoints in our experi-
ments with the Wavelan wireless network. Processes did
not have to block and wait for other processes to transmit
messages. Messages were also transmitted over the wire-
less link just once instead of twice, as in normal execution,
resulting in less contention on the wireless network and
lower latency for message transmission.

An interesting phenomenon is that for some traces the
overhead due to message logging and checkpointing is ac-
tually less than that due to checkpointing. One explanation
is that the action of logging message changed the timing of
messages transmitted on the wireless network and thereby
contentions were reduced.

6 Conclusions
This paper described a message logging protocol for

mobile hosts, mobile support stations and home agents in
a Mobile IP environment. An approach to organizing the
distributed state information was also presented. The or-
ganizing scheme provides easy garbage collection without
participation from mobile hosts and can tolerate the case
where some mobile support stations do not have enough
stable storage for mobile hosts to store state information.

Failure free overhead and recovery speed were com-
pared between an ideal consistent checkpoint protocol and
our message logging protocol. Message logging incurred
only marginally larger overhead during failure free opera-
tion compared to the ideal consistent checkpointing proto-
col. Message logging has a decided advantage in recovery

300

with mobile wireless networks.

Acknowledgment
We take this opportunity to thank the anonymous refer-

ees for their comments.

References
[I] C. Perkins, Mobile IP Design Principles and Practices.

Addison-Wesley, 1997.

[2] C. P. (ed.), "IPv4 Mobility Support," RFC 2002, October
1996.

[3] B. R. Badrinath, A. Acharya, and T. Imielinski, "Impact of
Mobility on Distributed Computations," SIGOPS Review,
pp. 15-20, April 1993.

[4] L. A. S. Rao and H. Vin, "The Cost of Recovery in Message
Logging Protocols," Proceedings of the 17th Symposium on
Reliable Distributed Systems, pp. 10-18, October 1998.

[5] K. M. Chandy and L. Lamport, "Distributed snapshots: De-
termining global states of distributed systems," ACM Trans-
actions on Computer Systems, vol. 3, no. 1, pp. 63-75,
February 1985.

[6] R. Koo and S. Toueg, "Checkpointing and rollback-
recovery for distributed systems," IEEE Transactions on
Software Engineering, vol. SE-13, no. 1, pp. 23-31, Jan-
uary 1987.

[7] R. E. Strom and S. Yemini, "Optimistic recovery in dis-
tributed systems," ACM Transactions on Computer Systems,
vol. 3, no. 3, pp. 204-226, August 1985.

[8] D. B. Johnson and W. Zwaenepoel, "Sender-based Message
Logging," Proceedings of the 17th International Symposium
on Fault-Tolerant Computing, pp. 14-19, July 1987.

[9] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, "The
Performance of Consistent Checkpointing," Proceedings
of the 11th Symposium on Reliable Distributed Systems,
pp. 39-47, October 1992.

[10] L. M. Silva and J. G. Silva, "Global Checkpointing for Dis-
tributed Programs," Proceedings of the 11th Symposium on
Reliable Distributed Systems, pp. 155-162, October 1992.

[II] J. Plank and K. Li, "Faster Checkpointing with N+l Parity,"
Proceedings of the 24th International Symposium on Fault-
Tolerant Computing, pp. 288-297, August 1994.

[12] Y.-M. Wang, Y. Huang, P. Vo, P.-Y Chung, and C. Kintala,
"Checkpointing and its Applications," Proceedings of the
25th International Symposium on Fault-Tolerant Comput-
ing, pp. 22-31, June 1995.

[13] N. Neves and W. K. Fuchs, "Adaptive Recovery for Mobile
Environments," Communications of the ACM, vol. 40, no. 1,
pp. 68-74, January 1997.

[14] D. K. Pradhan, P. Krishna, and N. H. Vaidya, "Recovery
in Mobile Environments: Design and Trade-off Analysis,"
Proceedings of the 26th International Symposium on Fault-
Tolerant Computing, pp. 16-25, June 1996.

[15] A. Acharya and B. Badrinath, "Checkpointing Distributed
Applications on Mobile Computers," Proceedings of the 3rd
International Conference on Parallel and Distributed Infor-
mation systems, pp. 73-80, September 1994.

[16] R. Prakash and M. Singhal, "Low-Cost Checkpointing
and Failure Recovery in Mobile Computing Systems,"
IEEE Transactions on Parallel and Distributed Systems,
pp. 1035-1048, October 1996.

[17] H. Higaki and M. Takizawa, "Checkpoint-Recovery Proto-
col for Reliable Mobile Systems," Proceedings of the 17th
Symposium on Reliable Distributed Systems, pp. 93-99, Oc-
tober 1998.

[18] G. Cao and M. Singhal, "On the Impossibility of Min-
Process Non-Blocking Checkpointing and an Efficient
Checkpointing Algorithm for Mobile Computing Systems,"
Proceeding of the 27th International Conference on Parallel
Processing, pp. 37-44, August 1998.

[19] G. Cao and M. Singhal, "Low-Cost Checkpointing with
Mutable Checkpoints in Mobile Computing Systems," Pro-
ceedings of the 18th International- Conference on Dis-
tributed Computing System, pp. 462-471, May 1998.

[20] K. Ssu, W.K. Fuchs, and N. Neves, "Adaptive Checkpoint-
ing with Storage Management for Mobile Environments,"
manuscript, December 1998.

[21] D. B. Johnson, "Scalable and Robust Internetwork Routing
for Mobile Hosts," Proceedings of the 14th International
Conference on Distributed Computing Systems, pp. 2-11,
June 1994.

[22] F. B. Schneider, "Implementing fault-tolerant services using
the state machine approach: A tutorial," ACM Computing
Surveys, vol. 22, no. 4, pp. 299-319, December 1990.

[23] E. Elnozahy, D. Johnson, and Y.-M. Wang, "A Survey
of Rollback-Recovery Protocols in Message-Passing Sys-
tems," Tech. Rep. CMU-CS-96-181, School of Computer
Science, Carnegie Mellon University, October 1996.

[24] L. Alvisi and K. Marzullo, "Message Logging: Pessimistic,
Optmistic, Causal, and Optimal," IEEE Transactions on
Software Engineering, pp. 149-159, February 1998.

[25] N. Neves and W. K. Fuchs, "RENEW: A Tool for Fast and
Efficient Implementation of Checkpoint Protocols," Pro-
ceedings of the 28th International Symposium on Fault-
Tolerant Computing, pp. 58-67, June 1998.

[26] J. Plank, M. Beck, G. Kingsley, and K. Li, "Libckpt: Trans-
parent Checkpointing under Unix," Usenix Winter 1995
Technical Conference, pp. 213-233, January 1995.

[27] http://www.wavelan.com.

